read more

first_imgFeature | September 20, 2010 New Model May Simplify High-Dose Radiosurgery Planning News | Radiation Therapy | August 15, 2019 First Patient Enrolled in World’s Largest Brain Cancer Clinical Trial Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive… read more There is yet no straightforward way to determine the optimal dose level and treatment schedules for high-dose radiation therapies such as stereotactic radiation therapy, used to treat brain and lung cancer, or for high-dose brachytherapy for prostate and other cancers. Radiation oncologists at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) may have solved the problem by developing a new mathematical model that encompasses all dose levels.Typically, radiation therapy for cancer is given in daily, low doses spread over many weeks. Oncologists often calculate the schedules for these fractionated, low-dose treatment courses using a mathematical model called the linear-quadratic (LQ) Model. The same calculation model is used to evaluate radiation response, interpret clinical data and guide clinical trials.“Unfortunately the LQ Model doesn’t work well for high-dose radiation therapy,” says co-author Nina Mayr, M.D., professor of radiation oncology at the OSUCCC-James. “Our study resolves this problem by modifying the current method to develop the Generalized LQ (gLQ) Model that covers all dose levels and schedules.”If verified clinically, the gLQ Model could guide the planning of dose and schedules needed for the newer radiosurgery and stereotactic radiation therapy and high-dose brachytherapy procedures that are increasingly used for cancer patients, she says.“Developing proper radiation dose schedules for these promising high-dose treatments is very challenging,” Mayr says. “Typically, it involves phase I dose-finding studies and a long, cumbersome process that allows only gradual progression from the pre-clinical and clinical trial stages to broader clinical practice.”The new gLQ Model could allow oncologists to design radiation dose schedules more efficiently, help researchers conduct clinical trials for specific cancers more quickly and make these high-dose therapies available to cancer patients much sooner, Mayr says.Fractionated low-dose therapy causes cumulative damage to tumor cells during the many weeks of exposure, while causing minimal damage to hardier normal cells. Patients, however, must return repeatedly to the hospital for many weeks to complete their treatment. High-dose therapy has become possible because of advances in computer and radiation technology. It uses multiple beams of radiation that conform tightly to a tumor’s shape. They converge on the cancer to deliver higher total radiation levels, while sparing normal tissues. This kills more tumor cells per treatment, so far fewer treatments are needed overall.The new study, published recently in the journal Science Translational Medicine, tested the gLQ Model in cell and animal models and is expected to be evaluated soon in clinical trials.“Our Generalized LQ Model determines appropriate radiation levels across the entire wide spectrum of doses, from low and high, and from many to very few treatments, which is a new approach,” Mayr says.Note: First author Dr. Jian Z. Wang, director of the OSUCCC-James Tumor Response Modeling Laboratory in Radiation Oncology, passed away unexpectedly in June 2010. He was largely responsible for developing the Generalized gLQ Model. Other Ohio State researchers involved in this study were Drs. Zhibin Huang, Simon S. Lo and William T.C. Yuh. FacebookTwitterLinkedInPrint分享 Catalyst PT image courtesy of C-RAD News | Proton Therapy | August 06, 2019 IBA Signs Contract to Install Proton Therapy Center in Kansas IBA (Ion Beam Applications S.A.) recently signed a contract and received the first payment for a Proteus One solution… read more Following radiation, the bone marrow shows nearly complete loss of blood cells in mice (left). Mice treated with the PTP-sigma inhibitor displayed rapid recovery of blood cells (purple, right). Credit: UCLA Broad Stem Cell Research Center/Nature Communications News | Brachytherapy Systems | August 14, 2019 Efficacy of Isoray’s Cesium Blu Showcased in Recent Studies August 14, 2019 — Isoray announced a trio of studies recently reported at scientific meetings and published in medica read more Feature | August 05, 2019 | Dave Fornell, Editor Most Popular Radiology and Radiotherapy Topics in July 2019 August 5, 2019 — Here is the list of the most popular content on the Imaging Technology New (ITN) magazine website fr read more News | Radiation Therapy | August 02, 2019 Varian Showcases Cancer Care Systems and Software at AAPM 2019 Varian showcased systems and software from its cancer care portfolio, including the Identify Guidance System, at the… read more News | Patient Positioning Radiation Therapy | August 15, 2019 Mevion and C-RAD Release Integration for Improved Proton Therapy Treatment Quality Mevion Medical Systems and C-RAD announced the integration between the C-RAD Catalyst PT and the Mevion S250i proton… read more Related Content The MD Anderson Proton Therapy Center expansion is expected to be completed in 2023. Rendering courtesy of Stantec. News | Radiation Oncology | July 31, 2019 Laura Dawson, M.D., FASTRO, Chosen as ASTRO President-elect The members of the American Society for Radiation Oncology (ASTRO) elected four new officers to ASTRO’s Board of… read more The top piece of content in July was a video interview explaining how Princess Margaret Cancer Center is using machine learning to create automated treatment plans. This was a hot topic at the American Association of Physicists in Medicine (AAPM) 2019 meeting in July.  News | Proton Therapy | August 08, 2019 MD Anderson to Expand Proton Therapy Center The University of Texas MD Anderson Cancer Center unveiled plans to expand its Proton Therapy Center during a… read more News | Radiation Therapy | August 16, 2019 Drug Accelerates Blood System’s Recovery After Radiation, Chemotherapy A drug developed by UCLA physician-scientists and chemists speeds up the regeneration of mouse and human blood stem… read more News | Patient Positioning Radiation Therapy | August 07, 2019 Qfix kVue One Proton Couch Top Validated by Mevion Medical Systems Qfix and Mevion Medical Systems announced that a special version of the kVue One Proton couch top is now both validated… read more last_img read more